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Evaluation and development of a low power fall
detection algorithm implemented in a hearing

implant
Fabian Schießendobler

Abstract—As the world’s population ages, age-related health
risks are increasing, particularly the risk of falls among older
people. Falls pose a significant threat to the health and well-being
of older adults and require prompt support for prevention and
mitigation. Taking advantage of the widespread use of hearing
aids and implants among older adults, this paper proposes the
development of an effective fall detection algorithm tailored
for integration into hearing implant systems. Machine learning
algorithms, particularly those based on vision and sensors, have
shown promise in fall detection systems. However, integrating
such systems into hearing implant systems presents several chal-
lenges, including accurately detecting falls with head-mounted
sensors and implementing power-saving algorithms. This innova-
tive algorithm addresses these challenges by accurately detecting
falls, near falls, and activities of daily living (ADL) while
minimising energy consumption, thereby providing potentially
life-saving assistance. Using a dataset from Inertial Measurement
Units (IMU) attached to participants’ heads, activities were
categorised into falls, near falls and ADL. Different feature
subgroups were investigated, and a hybrid Convolutional Neural
Network-Long Short-Term Memory (CNN-LSTM) architecture
was developed for classification. Hyperparameter tuning of the
machine learning algorithms and downsizing for low power
consumption were performed, resulting in the development of
an efficient fall detection algorithm suitable for hearing implant
systems. The proposed algorithm, which uses acceleration data
with magnitude, demonstrates superior classification accuracy
performance while maintaining power consumption efficiency.
The CNN-LSTM architecture effectively captures spatial and
temporal patterns, resulting in high accuracy in classifying falls
and ADL. These findings contribute to the advancement of
fall detection systems for hearing implant systems, ultimately
improving older people’s safety and quality of life. Further
research is recommended to improve the classification of near
falls and validate the algorithm’s effectiveness in real-world
settings so that it can be implemented in a market-ready device.

Index Terms—Fall Detection, Hearing Implant, Machine
Learning, Supervised Learning, Timeseries Data.

I. INTRODUCTION

AS healthcare and living conditions improve, the global
average life expectancy is increasing, leading to a shift

in the demographic composition of societies towards an older
population. By 2050, Europe will likely have 164 million
individuals aged 65 and above [1]. Furthermore, the global
population of those aged 60 and over is expected to be higher
than those younger than 15 years [2]. With this demographic
change comes an increased prevalence of age-related health
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risks, particularly the risk of falling among elderly individuals
[3]. Falls pose a significant risk to the health and well-being
of older adults, often resulting in injuries, decreased mobility,
and a decline in overall quality of life [4]. They are the primary
cause of injury-related fatalities among seniors aged 79 and
above and the second most common cause of unintentional
injury-related deaths across all age groups [5]. Moreover,
the absence of prompt assistance during a fall increases the
severity of injuries and extends recovery for older adults [6].

Currently, the use of hearing aids and implants among
older adults has become more common to address age-related
hearing impairments [7]. While these devices enhance auditory
perception, they also present an opportunity to integrate fall
detection capabilities, leveraging the technology already worn
by many seniors. Therefore, there is a need for an effective
fall detection algorithm explicitly designed for hearing implant
systems. Such an algorithm would need to accurately identify
falls, near falls and activities of daily living (ADL) while
minimising energy consumption to provide potentially life-
saving assistance. Addressing these challenges will improve
the safety and well-being of elderly individuals, empowering
them to maintain independence and autonomy in their daily
lives. In recent years, machine learning algorithms have played
a significant role in advancing technologies for fall detection.
There are two primary categories of fall detection based on
machine learning: Vision-based fall detection and sensor-based
fall detection [8].

Vision-based fall detection systems use cameras to monitor
and analyse human activities, detecting falls by identifying
specific motion patterns or anomalies in the video feed. These
systems use computer vision techniques and machine learning
algorithms to distinguish falls from everyday activities. Vision-
based fall detection is more accurate at spotting falls because
it captures detailed environmental information but comes with
higher infrastructure costs. Sensor or wearable fall detection
systems use accelerometers, gyroscopes, pressure sensors and
magnetometers to monitor an individual’s movements. The
system analyses the data collected from these sensors to
detect sudden changes or anomalies that may indicate a fall.
Machine learning algorithms distinguish between everyday
activities and fall events, offering a non-disturbing and ef-
fective approach. Embedding sensor-based fall detection into
wearable devices is seamless and cost-effective due to the
use of a single sensor unit. By continuously monitoring
the movements, fall detection systems provide timely alerts
to caregivers or emergency services. Furthermore, research
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proposed approaches for a combination of wearable devices
and machine vision [9], where vision-based solutions are used
to validate the predictions of the sensor-based approach [10].
Using machine learning for fall detection shows promising
potential in improving functional outcomes and daily activities
[11], [12]. This technology identifies falls and contributes to
proactive measures for preventing injuries, thereby signifi-
cantly enhancing the overall quality of life for individuals at
risk of falling.

Recent studies have proposed various methods for fall
detection using different technologies. For instance, Wang and
Jia proposed a video-based fall detection method by using
the YOLOv3 network with a pre-labelled dataset [13]. Lee
and Mihailidis focused on indoor fall detection, using tracking
techniques with connected-components labelling to extract rel-
evant features from silhouette data [14]. Wang et al. presented
a Wi-Fi-based system for fall detection that uses digital signal
processing and a Support Vector Machine (SVM) algorithm
to analyse the Channel State Information (CSI) to identify
abnormal sequences indicating falls [15]. Kwolek and Kepski
utilised a triaxial accelerometer alongside depth maps from a
Kinect camera, employing an SVM classifier to process data
from both sources [16]. Furthermore, Vallejo et al. developed
a fall detection method based on Artificial Neural Networks
(ANN) utilising data from a 3-axis accelerometer [17]. Sengto
and Leauhatong used a similar accelerometer setup, feeding a
backpropagation Multilayer Perceptron (MLP) to distinguish
between falls and daily-life activities of older adults [18]. The
accelerometer was attached to the waist of the study partici-
pants. In another approach, Li et al. proposed a Deep Learning
(DL) model, combining a Temporal Convolutional Network
(TCN) and Gated Recurrent Unit (TCN-GRU) architecture,
trained on datasets such as MobiAct and Mosi-F for feature
extraction and classification [19]. Most sensor-based fall de-
tection algorithms focus on sensors positioned at the chest,
waist or wrist level. Despite ongoing research in developing
fall detection systems for hearing aids, limited progress has
been made due to challenges with accurately detecting falls
when sensors are positioned on the head and difficulties in
implementing energy-saving algorithms. In a study conducted
by Burwinkel et al., the efficacy of fall detection using inertial
sensors in hearing instruments was evaluated by comparing
them against traditional fall detection pendants [20]. The
results suggest that hearing instruments with embedded fall
detection technology could effectively replace more traditional
and visible devices, providing a discreet and accurate method
for fall detection and potentially reducing the incidence of
long lies after a fall among older adults. A notable example
is Starkey’s Livio Edge AI hearing aid, which integrates a fall
detection algorithm using an Inertial Measurement Unit (IMU)
and virtual sensor streams to differentiate between falls and
daily activities [21].

Burwinkel et al.’s study has found promising results, espe-
cially for implementation in a hearing implant [20]. To the
best of our current knowledge, no research has been done
to develop a low-power fall detection algorithm embedded in
a hearing implant system capable of differentiating between
falls, near falls and ADL. This paper presents a novel approach

to effectively detect and prevent falls among individuals,
marking a significant stride towards enhancing safety and
quality of life for those with hearing impairments.

II. METHODS

A. Data Collection

Özdemir and Barshan collected the dataset used in this
study [22]. The collected dataset is available under the Cre-
ative Commons Attribution 4.0 International (CC BY 4.0)
license, promoting accessibility and collaborative exploration.
Seventeen volunteers (10 male, seven female), with an average
age of 21.94 ± 1.98 years, an average height of 171.64 ±
7.82 cm and an average weight of 65 ± 13.85 kg, contributed
to the dataset, representing a young age group with diverse
body types. Each participant wore a sensor (Xsens MTw,
Movella) securely attached to their head, which housed an
IMU capable of capturing 23 measurements. A total of 36
activities were performed, each repeated five times by every
participant to ensure the dataset’s reliability and robustness.
This resulted in 3060 instances, each consisting of 20 s of
IMU data. Participants were instructed to execute the activities
naturally, imitating the movements of older people. During the
performance of each activity, the sensor continuously recorded
IMU data at a sampling rate of 25Hz to capture detailed
motion dynamics.

B. Data Processing

In this study, the initial 36 activities were reduced and
categorised into 13 falls, 13 ADL and three near falls, resulting
in 2286 instances, see Figure 1.

The IMU data was preprocessed by selectively extracting
significant timeseries and sensor signals such as triaxial ac-
celerometer and gyroscope data. A sliding window technique
was subsequently applied, resulting in 10021 instances. Each
instance spanned 1.44 s, representing the average duration of a
single movement as outlined in Figure 1. To achieve uniform
distribution, falls had an overlap of 0.64 s, near falls 0.72 s,
and ADL 1.28 s. The overlaps were chosen to balance the
number of windowed datasets for the different activities. The
datasets were shuffled randomly with a seed value of 42 for
reproducibility and to reduce the risk of model overfitting
before being fed into the machine learning algorithms.

C. Investigation Feature Subgroups

To maintain low power consumption, it is essential to
assess whether triaxial gyroscope data is necessary due to its
additional power consumption compared to an accelerometer.
Therefore, the windowed datasets underwent postprocessing,
resulting in four subgroups:

• Timeseries data including triaxial accelerometer values,
• timeseries data including triaxial accelerometer values

alongside their magnitude,
• timeseries data including triaxial accelerometer and gy-

roscope values,
• and timeseries data including triaxial accelerometer and

gyroscope values along with their respective magnitudes.
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Fall Actions
Vertical falling forward on the floor
Vertical falling forward on the floor with arm protection
Vertical falling on the knees and then lying on the floor
Vertical falling on the floor, ending in right lateral position
Vertical falling on the floor, ending in left lateral position
Vertical back-falling on the floor, ending lying
Vertical back-falling on the floor, ending lying in right
lateral position
Vertical back-falling on the floor, ending lying in left
lateral position
Vertical right-falling on the floor, ending lying
Vertical left-falling on the floor, ending lying
Vertical standing on a podium going on the floor
Falling on the floor following a vertical trajectory
Slowly slipping down a wall

ADL
Standing
Walking forward
Walking backwards
Running
Squatting, then standing up
Bending, about 90 degrees
Bending to pick up an object on the floor
Walking with a limp
Sit on a chair
Sit on a bed
Lying on a bed from standing
Lying
Rising from bed

Near Falls
Vertical falling on the knees, with recovery
Stumbling, with recovery
Trip-over

Fig. 1. Activities for training the machine learning algorithm.

For comparative analysis across the different feature sub-
groups, a hybrid Convolutional Neural Network-Long Short-
Term Memory (CNN-LSTM) architecture was developed, and
its performance was evaluated in terms of accuracy and
loss function. The dataset underwent two splits: an 80-20
split, allocating 80% of the timeseries data for training and
testing while reserving 20% for validation, and a separate
split dividing the dataset into a training and test set with 16
participants and a validation set involving a single participant
(referred to as 16-1 split).

D. Hypertuning of Machine Learning Algorithms

The dataset, which consists of timeseries data containing
triaxial accelerometer values and magnitude, was further used
to evaluate three different machine learning algorithms for
sensor-based fall detection to determine the most effective
model. These algorithms include:

• A Convolutional Neural Network (CNN),
• a Long Short-Term Memory (LSTM) model,
• and a CNN-LSTM hybrid model.
All models underwent hyperparameter tuning using Keras-

Tuner to optimise the performance based on the underlying
dataset [23]. The dataset was initially split in an 80-20 ratio.
Here, 20% of the data was used for validation, while the
remaining 80% facilitated training and testing within the
neural network framework. A further refinement followed, in
which the 80% segment was divided into a further 80-20
split. This secondary split allocated 80% to training the neural
network and reserved 20% for testing its effectiveness. In
connection with the RandomSearch tuner, the secondary split
is used to find the optimal hyperparameters yielding the lowest
validation loss for the dataset. Once the best hyperparameter
combination was found, the best epoch based on the validation
accuracy was selected to train the model. The effectiveness
of the chosen hyperparameters and epoch was then validated
using the validation data from the initial 80-20 split and the 16-
1 split to determine which model achieved the highest accuracy
with the lowest loss function.

E. Low-power Fall Detection Algorithm

To effectively deploy a machine learning algorithm on a
Microcontroller Unit (MCU), it is essential to prioritise low
power consumption and minimal flash space usage. Deploy-
ment on an MCU requires downsizing hypertuned algorithms
to reduce the number of layers while maintaining optimal
performance. Specifically, the aim was to downsize the fall
detection algorithm to less than 110 kB. To achieve this
goal, a Teacher-Student-Model framework was implemented
to distil the knowledge from the hypertuned teacher model to
the downsized student model. Knowledge transfer from the
teacher model to the student is achieved by minimising the
loss function designed to align the softened teacher logits
(unnormalised predictions) and the ground truth labels [24].
The softening of the logits is achieved by introducing a ”tem-
perature” scaling factor within the softmax operation, thereby
smoothing the probability distribution and revealing the inter-
class relationships embedded in the teacher’s learning [24].
The performance evaluation of the low-power fall detection
algorithms was then validated using the validation data from
the initial 80-20 split and the 16-1 split to determine which
model achieved the highest accuracy, Precision, Recall and
F1-Score with the lowest loss function.

III. RESULTS

A. Feature Set Selection

Investigation of the feature subgroups revealed that the
most efficient and effective configuration included timeseries
data containing triaxial accelerometer values and their mag-
nitude, see Figure 2. This choice was made to balance the
need for accurate data classification while minimising power
consumption, as the inclusion of gyroscope data is typically
associated with higher power consumption. Table I and Table
II show detailed results for each feature dataset. The models
achieved an average accuracy between 94.2% and 95.7%, with
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loss functions between 0.082 and 0.101. The architectures
using additional gyroscope data show a slightly lower loss
function while maintaining the same accuracy as without
a gyroscope. However, in addition to their effectiveness in
classifying falls and ADL, they showed a higher rate of false
negatives (FN) (13.15% for data including triaxial accelerome-
ter and gyroscope values and 16.57% for data including triaxial
accelerometer and gyroscope values along with their respective
magnitudes) for near falls, predicting them mainly as ADL.
These models were, therefore, excluded from further consid-
eration. Moreover, the impact of incorporating gyroscope data
on power consumption was also considered in this decision.

The average accuracy and loss function for acceleration
and acceleration with magnitude features are almost identi-
cal. However, the dataset, which included acceleration with
magnitude, was selected due to a slightly lower loss function
and its generalisation over different data splits compared to
the dataset, which only contained triaxial acceleration. The
model demonstrates robust performance in classifying falls,
near falls and ADL, with true positive (TP) rates exceeding
90% for each class. In contrast, the feature set containing only
acceleration values shows a significant drop in precision due
to incorrect classification of near falls, with only 88.64% TPs,
where 5.68% are misclassified as ADL and 5.68% as falls.
Continuing with magnitude data could be advantageous for
broader applications and additional activities. This decision is
based on the understanding that individuals fall in different
directions, resulting in fluctuations in the axial sensor values.
In contrast, the magnitude remains consistent regardless of the
direction of the fall, providing a more stable reference point
for analysis.

TABLE I
ACCURACY (A) AND LOSS (L) OF THE CNN-LSTM MODEL USING

TIMESERIES DATA, INCLUDING TRIAXIAL ACCELEROMETER VALUES
(ACC) AND TRIAXIAL ACCELEROMETER ALONGSIDE THEIR MAGNITUDE

(ACC + M).

ACC ACC + M
A/% L A/% L

16-1 Split 95 0.094 92.6 0.088
80-20 Split 95.1 0.107 96 0.101
Average 95.1 0.101 94.3 0.095

TABLE II
ACCURACY (A) AND LOSS (L) OF THE CNN-LSTM MODEL USING

TIMESERIES DATA, INCLUDING TRIAXIAL ACCELEROMETER AND
GYROSCOPE VALUES (ACC + GYR) AND TRIAXIAL ACCELEROMETER

AND GYROSCOPE VALUES ALONG WITH THEIR RESPECTIVE MAGNITUDES
(ACC + GYR + M).

ACC + GYR ACC + GYR + M
A/% L A/% L

16-1 Split 95.2 0.086 92.5 0.078
80-20 Split 96.1 0.08 95.9 0.085
Average 95.7 0.083 94.2 0.082

B. Performance of hypertuned Machine Learning Algorithms
The results of the performance evaluations for the sensor-

based fall detection models, using timeseries data containing
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Fig. 2. Confusion matrix of the CNN-LSTM architecture using the 16-1
split of timeseries data, including triaxial accelerometer values with their
magnitude.

triaxial accelerometer values and their magnitudes, are sum-
marised in Table III. The table compares the performance
metrics of three machine learning algorithms. The CNN model
achieved an average accuracy over both splits of 95.2% and a
loss of 0.14. Similarly, the average performance of the LSTM
model over both splits is an accuracy of 96.6% and a loss of
0.152. Notably, the hybrid model outperformed the individual
CNN and LSTM models, see Figure 3. On the 16-1 split, it
achieved an accuracy of 96.4% and a loss of 0.154. On the 80-
20 split, it achieved the highest accuracy of 98.8% with a loss
of 0.064. The average performance of the CNN-LSTM hybrid
model across both splits is an accuracy of 97.6% and a loss
of 0.109. The hybrid model uses the strengths of both CNNs
and LSTMs. While CNNs excel in capturing spatial patterns,
LSTMs are trained to perform well in capturing temporal
dependencies.

Based on the accuracy and loss metrics, the CNN-LSTM
and LSTM architectures are selected for further development
and knowledge distillation to deploy the machine learning
algorithm on a microcontroller. The hypertuned CNN model
was not further considered because it showed a higher rate of
FN (15.43%) for near falls, predicting them mainly as ADL.

TABLE III
ACCURACY (A) AND LOSS (L) OF HYPERTUNED MACHINE LEARNING

ALGORITHMS TRAINED USING TIMESERIES DATA, INCORPORATING
TRIAXIAL ACCELEROMETER VALUES AND THEIR RESPECTIVE

MAGNITUDES.

CNN LSTM CNN-LSTM
A/% L A/% L A/% L

16-1 Split 93.7 0.192 95.8 0.191 96.4 0.154
80-20 Split 96.6 0.088 97.3 0.112 98.8 0.064
Average 95.2 0.14 96.6 0.152 97.6 0.109
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Fig. 3. Confusion matrix of the hypertuned CNN-LSTM architecture,
applying the 16-1 split of timeseries data, including triaxial accelerometer
values along with their magnitude.

C. Performance of low-power Machine Learning Algorithms

The performance evaluation results for the downscaled low-
power fall detection algorithms are summarised in Table IV.
This table provides a comparative analysis of the accuracy,
weighted precision, weighted recall and weighted F1-Score
metrics for two machine learning algorithms.

The LSTM architecture shows average performance values
between 88.6% and 95.6%, while the CNN-LSTM consistently
performs with high values between 94.7% and 96.1%. Due to
the complexity of LSTM layers compared to convolutional
or dense layers, the LSTM teacher model had a memory
size of 1.61MB. Consequently, reducing the model size by
88.5% to 185 kB to approach the desired size goal resulted
in decreased performance. In particular, the LSTM model
struggled to accurately classify near falls, with 25.17% FN
at the 16-1 split, predicting them mainly as ADL. In addition,
the loss function yielded a value of 0.268. In comparison, the
downscaled CNN-LSTM model maintained high performance
metrics despite being reduced by 75.1% to 94 kB and 24301
total parameters. It showed only a 1% reduction in accuracy
compared to the teacher model for the 16-1 split, along with
a slightly higher loss function of 0.177.

TABLE IV
ACCURACY (A), WEIGHTED PRECISION (P), WEIGHTED RECALL (R) AND

WEIGHTED F1-SCORE (F1) OF THE DOWNSCALED LOW-POWER LSTM
AND CNN-LSTM ARCHITECTURES, INCORPORATING TRIAXIAL

ACCELEROMETER VALUES AND THEIR RESPECTIVE MAGNITUDES.

LSTM CNN-LSTM
A/% P/% R/% F1/% A/% P/% R/% F1/%

16-1 Split 90.6 88.6 90.7 89.2 95.4 93.5 95.3 94.2
80-20 Split 95.6 95.6 95.6 95.6 96.8 95.8 96.8 96.2
Average 93.1 92.1 93.2 92.4 96.1 94.7 96.1 95.2
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Fig. 4. Confusion matrix of the downscaled low-power CNN-LSTM architec-
ture, applying the 16-1 split of timeseries data, including triaxial accelerometer
values along with their magnitude.

IV. DISCUSSION

A. Acceleration Data with Magnitude for Improved Classifi-
cation

Several factors drove the decision to use triaxial acceleration
data, along with their respective magnitudes, as features for
classification. This choice was influenced by classification
effectiveness, stability and power efficiency considerations,
making it suitable for use in MCUs. In contrast, including
gyroscope data alongside accelerometer data increases power
consumption due to additional sensor readings and processing
but does not perform better.

Using acceleration data with magnitude provides a broad
representation of motion dynamics independent of the direc-
tion of motion. This invariant representation simplifies classi-
fication by focusing on overall motion rather than direction-
specific patterns. Magnitude data provides a stable reference
point for analysis and is immune to orientation changes or
sensor noise. This stability enhances the model’s ability to
differentiate between falls, near falls and ADL, even under
challenging conditions or noisy sensor environments. The
stability of the feature representation also contributes to the
model’s adaptability to different scenarios and user demo-
graphics. It ensures that the model remains effective despite
user age, height and mobility differences that can affect
movement characteristics.

B. CNN-LSTM Architecture for Timeseries Data Classification

The choice of a CNN-LSTM architecture for classifying
timeseries data into falls, near falls and ADL was based on
several crucial advantages observed during the investigation.
This architecture combines the strengths of CNNs in capturing
spatial patterns and LSTM networks in modelling temporal
dependencies. Falls and near falls show clearer spatial patterns
and temporal dynamics than ADL. CNNs effectively capture
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spatial features from raw sensor data, which is essential for
identifying specific movement patterns. On the other hand,
LSTM networks are effective at modelling the temporal de-
pendencies present in timeseries data, enabling the detection
of motion sequences indicative of falls or near falls.

The CNN-LSTM architecture demonstrated outstanding per-
formance in terms of accuracy and loss compared to either
CNN or LSTM models alone. This improved performance
is related to the collaboration of the CNN and LSTM lay-
ers, which use spatial and temporal information for accurate
classification. In addition, the flexibility of the CNN-LSTM
architecture allows it to adapt to different timeseries data,
making it suitable for a wide range of applications beyond
fall detection.

V. CONCLUSION

The CNN-LSTM architecture provides a robust framework
for classifying timeseries data into fall, near fall and ADL
categories. This architecture achieves high performance in
classification tasks by combining spatial and temporal in-
formation compared to the standalone models. In addition,
using acceleration data with magnitude improves classification
accuracy while maintaining performance efficiency. These
findings contribute to the development of an effective and
efficient fall detection system implemented in hearing implant
systems, thus improving the safety and well-being of older
adults and enabling them to maintain their independence and
autonomy in daily life.

The results provide promising insights into the effectiveness
and efficiency of the system. However, further research is
essential to improve the system to the point where it can be
implemented in a market-ready device. In particular, additional
near fall timeseries data is needed to improve the classification
of near falls or to classify into falls and no falls, as mainly
all FN classified as ADL are near falls. Combining near falls
and ADL into a single class would reduce the loss function
and increase the accuracy of the fall detection algorithm. This
solution would allow the algorithm to be even smaller in
memory size without any performance loss.
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